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I. INTRODUCTION

For some time now, stick propellants have been an option in favor with
charge designers. With the emergence of a domestic stick propellant
manufacturing capability, stick propellants are seeing increased application
to US charges, either in those already type classified, such as the 155-mm,
M203A1, I or charges .n varying degrees of development, such as the 155-mm,
XM216 modular charge or the 155-mm "universal-increment" charge. 3  Stick
propellants enjoy their popularity, in part, due to the ease with which gases
flow through the natural flow channels presented by the stick propellant
bundle. This geometry allows use of simplified and reliable base ignition
systems rather than some other means, such as a centercore, to distribute the
ignition stimulus uniformly throughout the charge, thus mitigating localized
ignition and the deleterious axial pressure waves that can be caused by
localized ignition.

Several 4 pevious studies have been conducted on flamespreading in stick
propellants. 4 -  In a direct comparison of full-bore, one-dimensional granular

and stick propellant charges in a simulator for the 155-mm howitzer, signifi-
cant differences were soen in the flamespread through the two charges. While
the orderly, axial progress of a flamefront could easily be discerned with a
granular charge, there was no well-defined flamefront through the stick
charge. Rather, flame first appeared at the rear of the charge, then lumi-

* nosity appeared in the axial ullage forward of the charge, and later the
entire charge began to increase in luminosity uniformly, without any obvious
convectively driven ignition wave through the charge. As part of a series of

1 David L. Kruczynski, "Final Report: Product Improvement Test of 155-mm
Propelling Charge M203E2," Combat Systems Test Activity, USA TECOM, Aberdeen
Proving Ground, MD, January 1986.

SSandor Einstein, Scott Westley, and Robert Garufi, "Development of a Single-
Base Stick, 155-mm, Modular Charge," Proceedings of 1986 JANNAF Propulsion
Meeting, CPIA Publication 455, Vol. IV, pp. 131-136, August 1986.

3Aaron Grabowsky, Philip Hui, and Donald Chiu, "Unicharge for Integrated Smart
Artillery Synthesis," Proceedings of 1985 JANNAF Propulsion Meeting, CPIA
Publication 425, Vol. III, pp. 453-465, April 1985.

4 Thomas C. Minor, "Experimental Studies of Multidimensional, Two-Phase Flow
Processes in Interior Ballistics," ARBRL-MR-03248, Ballistic Research Labora-
tory, USA ARRADCOM, Aberdeen Proving Ground, MD, April 1983.

5Thomas C. Minor and Albert W. Horst, "Ignition Phenomena in Developmental.
Combustible-Cased, 155-mm, M203E2 Propelling Charges," ARBRI.-TR-02568,

. Ballistic Research Laboratory, USA AMCCOM, Aberdeen Proving Ground, MD, July
1984..4.

6Thomas C. Minor and Albert W. Horst, "Theoretical and Experimental Investi-
gation of Flamespreading Processes in Combustible-Cased, Stick Propellant
Charges," BRL-TR-2710 Ballistic Research Laboratory, USA IABCOM, Aberdeen

0Proving Ground, MD, February 1986.
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fiamespreading tests conducted with combustible -cased stick propellants, 6

again in the 155-mm howitzer simulator, the importance of the jump conditions
at the entry plane of a stick propellant bundle was noted. While gases enjoy
a nearly resistanceless flow within a stick bundle, the discontinuity in
porosity associated with the bundle entrance made it difficult for gases to
enter the bundle, so much so that the igniter gases Look an alternate, unex-
pected path into the charge.

Several points served as motivation for this particular study in which
the effects on the flamespreading process of non-axial alignment of the sticks
with the principal axis of flow were examined. It has been our observation
that even though the intent may be to load the propellants in a well-
constrained bundle in which all the sticks are aligned with the axis of the
charge, such a configuration does not always obtain at the time of firlag of
the charge. Sticks can become twisted in the charge so that they are no
longer axially aligned. Indeed, such observations have been made with
versions of the M203AI or the XM216 in disassembling the charges or examining
them with flash radiography.

Situations may arise in which a centrally venting primer is required even
in a stick charg e. As an possible example, consider programmed- splitting
stick propellant, in which an array of slits is embedded in a stick grain to
be uncovered at some later portion of the interior ballistic cycle, exposing

* more surface area and increasing the amount of evolving gases to work on the
projectile. This concept relies on a seal of the end of the stick to ensure
that the slits are not opened prematurely, resulting in potentially cata-
strophic overpressures. Recent testing has indicated that perhaps a direct
venting of a harsh base igniter on the stick ends promotes early failure of
the end seal, so that a softer base igniter or perhaps even a centrally
venting igniter may be called for.

These above scenarios present situations in which the flow is not along
the principal axis of the stick propellant bed. While the resistance to flow
through a bundle in which the sticks are axially aligned is significantly less
than that for a randomly loaded granular charge, it would appear conceptually
that the flow at oblique angles of attack can progress from something greater
than that now seen with axially aligned sticks to infinite impedance with
completely transverse flow. This study examined some of the issues addressed
above, and provided a first step, to be coupled with other fixture tests and
gun tests, to assess the ballistic significance of obliquely loaded or twisted
stick propellant bundles. Somewhere in the progression of these experimental
studies, the need for new flow correlations for multiphase flow interior
ballistic models to adequately treat this situation will have to be add.'essed,
so as to aid in updating these models which strive to be phenomenologically
complete.

F'"'.Robbins and A.W. Horst, "Hi gh- Progress ivi tv/Densi ty (HPD) Propelling
Crge Concepts: Progress of Programmed-Splitting Stick Propellant'" BRI.-MR-

Th4;, Ballistic Research Laboratory, USA LABCOM, Aberdeen Proving Ground, MD,
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II. EXPERIMENTAL

A. Apparatus

Figure 1 depicts the apparatus used at the Ballistic Research Laborato.-v
to conduct the experimental investigation. The illustration of the simulatol-
for the 155-mm howitzer shows the mount with a clear plastic simulator for th,.
155-mm chamber in place. Although the mount also accepts higher-pressure,
filament-wound fiberglass chambers, the plastic chambers were used in this
study to a permit better view of the events transpiring within. The cas!-
acrylic chambers used in this study had a nominal interior diameter of 165 :rl!
and a nominal outer diameter of 191 mm. The muzzle end of the chamber wa.
closed by a modified MIO Projectile seated in a section of gun tube machined
to the dimensions of the M199 Cannon. The breech end of the chamber was
closed by a spindle similar to the mushroom configuration of the M185 Cannon
with the primer spithole located in the center of the spindle, housing three
piezoelectric pressure transducers. Only two of the pressure gages in the
spindle were used for this study. An instrumented baseplate, shown in Figure
2, was attached to the base of the projectile; it permits two gas pressure,
three total force, and two acceleration measurements at the projectile, base.
For this study, only two pressure and two force measurements were taken.

Photographic data were recorded with two high-speed, 16-mm cameras. Both
cameras were mounted with lenses to record the overall aspects of the event.
With both the cameras, data were recorded at a framing rate of approximately
5000 pictures per second. One-kHz timing signals were placed on the films by
electronic circuits internal to the cameras, and the firing fiducial (time at
which the firing voltage is applied to the gun) was also placed on the films
to aid in correlation of the film data with other data.

mV

A.A*

Figure 1. 155-mm Howitzer Simulator
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FORCE (3)

i ~ ~ACCELERATION (2)

PRESSURE (2) _

//

Figure 2. Instrumented Projectile Baseplate

Flash radiography was used to monitor the behavior of the solid phase
during the interior ballistic cycle. A single I-MeV head was employed,
aligned perpendicular to the chamber axis and providing a sufficient fan of
radiation so as to completely cover the length of the chamber. One image (a
"static" shot) was taken of the charge in the chamber before firing, and a
second, on a separate film, was recorded during the event by X-rays triggered
at a predetermined spindle pressure (a "dynamic" shot). The X-ray film was
protected from the blast of the disposable chamber by a wooden cassette, with
the forward face composed of layers of sacrificial wooden plates separated by
air spaces.

B. Charne Desin

The charges used in this study were constructed with M30Al slotted
single-perforation propellant from lot RAD-PE-738-1C. This propellant has a
length of 736 mm, an outer diameter of 6.37 mm, and a perforation diameter of
2.16 mm. In order to assess the effects of the nonaxial alignment of the

sticks in the bundle on the flamespreading process, the charges were made to

I% full chamber diameter so that circumferential ullage would not provide a path
% of least resistance to gas flow. The design of the chamber employed by the

simulator rendered it impossible to have a constant angle of obliquity for
% attack of the initial igniter and combustion gases, so as an approximation,
%the propellant sticks were twisted about the longitudinal axis of the bundle

so as to offer a nonzero angle of attack of the gases. The charges were

constructed in layers, beginning by giving the inner layer the desired amount

10
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A. Axially Aligned Charge

The spindle and projectile base pressures and the force measured at the

base of the projectile for the charge with the sticks axially aligned arc

recorded in Figure 7. The times are referenced to the instant at which the

firing signal was applied to the primer. Considering the area of the sensing

piston of the force gage, the relative scales of the pressure and force plots

are such that if only gas pressure were acting on the gages, the curves for
the forward pressure and force would approximately overlay one another, thus

providing a quick assessment of the amount of solid-phase loading on the base
of the projectile. The venting of the primer into the rear ullage behind the

charge is clearly seen on the spindle pressure trace. The spindle pressure

remained at a very low level during the ignition delay and its behavior
remained unremarkable until the chamber fractured at approximately 8.1 MPa.

For most of its record, the forward pressure remained nearly coincident with
the spindle pressure, reflecting the apparent ease with which gases permeate

the stick bed. The maximum difference between the two records is only on the

order of 2 MPa over the length of time the data were recorded. The force gage

indicated that there was some impact of the propellant on the base of the

projectile, as shown in the broad spike on the force gage record. That the

pressure as recorded by the force gage is lower than that measured by the

pressure gage is difficult to explain; perhaps the piston hung up in its

travel, since this was the first firing after the projectile baseplate was

assembled and the piston had not been previously exposed to pressures of this

magnitude.

15- 11
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The high-speed films recorded the path of flamespreading in the chamber
during the event. The primer was seen to vent into the rear ullage in a cone-
shaped plume at 1.2 ms after application of the firing voltage. The igniter
began to burn and the combustion in the rear ullage became more intense, and
by 1.9 ms there was some streaming of flame along the top of the charge, this
streaming expanding in extent until the rear upper quadrant of the charge was
covered at 2.4 ms. This streaming at the top of the charge then decreased in
extent and intensity until about 3.1 ms, at which time it began to increase to

most of the length of the top of the charge while, the luminosity in the rear
ullage became very bright by 5.3 ms. After this time, the luminosity in the
rear ullage remained intense, but the extent and luminosity of the streaming
decreased until 17.1 ms. The intense luminosity in the rear ullage continued,
and at 29.7 ms there was a bright stream of gas along the top of the charge.
At 31.1 ms, some luminosity was seen at the front of the charge, and by 32.6

ms there was some brightness along nearly the entire length of the charge when
the chamber fractured. At no point was a well-defined flamefront seen to

traverse the charge. While it was difficult to pick out the point at which
motion of the charge toward the front of the chamber began, the velocity of
the bundle as it approached the projectile was on the order of 1 m/s.

The static X-ray taken before the shot clearly showed the stick bundle
resting in the chamber, the basepad consisting of the black powder spot and
surrounding CBI, the axial ullage of approximately 25 mm between the spindle

*face and the basepad, and the axial ullage of approximately 50 mm between the
front of the stick propellant bundle and the projectile base. No
circumferential ullage was visible. The dynamic radiograph, recorded at a
spindle pressure of approximately 7 MPa, showed that the stick bundle had
moved forward to impact the projectile base. A small extent of
circumferential ullage existed at the top of the rear of the charge, in the
region of strong gas flow seen in the high-speed films. Not all of the sticks
moved forward equally; there were some sticks protruding from the rear of the
bundle. Though the charge moved forward to rest against the projectile base,
no sticks were seen to fill in the region around the boattail ramp. There was
no obvious fracture of propellant in the vicinity of the projectile base,
though the radiograph in this region was of poor quality. There was no
evidence of any remaining basepad in the dynamic X-ray.

B. One-Third-Maximum-Twist Charge

The spindle and projectile base pressures and the force measured at the
base of the projectile are displayed in Figure 8. Again, the spindle pressure
was well behaved until the chamber failed at nearly 12 MPa. The ignition
delay was shortened considerably in this shot in comparison to that observed
in the charge with the axially aligned sticks. The forward chamber pressure
did not remain coincident with the spindle pressure as in the previous shot,
reflecting the pressure gradient that was established across the twisted stick

bundle, The pressure difference at chamber failure was on the order of 9 MPa.

There was some impact on thece aof the projectile as aain evidenced by the

broad spike seen on the force gage.

In the high-speed films, the venting of the primer was manifested by an
asymmetric cone at 1.2 ms. At 1.4 ms, there was no luminositv in the rear

,% ullage, and only at about 1.8 ms did a slight glow appear in the top half of
the rear ullage. By 2.2 ms, the ullage was filled with moderate intensity

V.14
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Figure 8. Pressures and Force, 1/3-Maximum-Twist Charge

luminosity, with a tongue of flame streaming along the middle of the charge.

This tongue of flame grew longer, then diminished in intensity and extent
until it disappeared at 3.8 ms. The luminosity in the rear ullage decreased

until there were only hot spots at the top and bottom at 4.5 ms. At 5.3 ms,
the luminosity in the rear ullage began to increase, continuing to intensify

and feed a dim tongue of flame that extended the length of the charge at it!;

center at 7.9 ms. By 9.2 ms, the luminosity in the rear ullage had become.
quite intense, and several wavering sheets of flame extended from the rear,

these tongues growing in luminosity and extent until they covered nearly the

length of the charge at 17.0 ms. At this time, there was still no luminosity

at the front of the charge. These bright sheets of flame from the rear

continued to waver along the length of the charge, approaching the front of
the chamber at 22.9 ms but resulting in no stagnation at the projectile bas(,.

By 23.8 ms when the chamber failed, the entire chamber was engulfed in bright

luminosity, but no well-defined flamefront through the charge was noted. Ti,

maximum velocity noted for the charge was on the order of 2 m/s.

The static X-ray for the 1/3-maximum-twist charge showed all the loadir
features as described for the axially aligned charge. The twist of the s ,

was not evident from the X-ray, as the charge appeared as only a solid mis',

The dynamic radiograph was recorded at a spindle pressure of approximatelv

MPa. As with the previous shot, the stick bundle moved forward to the projp.r'

tile base, but no sticks moved forward to fill in the region around ti,
boattail. There was no evidence of any basepad materials in the rear u1la,

There was some circumferential ullage along the bottom of the charge near tll,

forward end of the chamber where the twist of the sticks was o%,viouis.

15



evidence of breakage of the propellant sticks in the region of the projectile
base was found from the dynamic X-ray.

C. Two-Thirds-Maximum-Twist Charge

The spindle and projecti'e base pressures and the force measured at the
base of the projectile for the 2/3-maximum-twist charge are displayed in

Figure 9. The ignition delay for this charge was shorter yet than that
recorded with the 1/3-maximum-twist charge. Both pressure curves were well
behaved, with an obvious pressure gradient established between the two
recording locations. The maximum difference reached between the two pressures
was on the order of 7 MPa, noted before chamber failure. The remarkable
result from this firing is seen by examination of the force record: the force
curve remained coincident with the forward pressure curve for the duration of
the event, indicating either no impact of the stick bundle on the base of the
projectile or one so gentle that it produced no significant response on the

gage.

The ambient lighting at the time of firing was such that the best view on
the high-speed films of the solid-phase dynamics was obtained on this shot.
The M82 primer was seen to vent into the rear ullage at 1.4 ms. The ullage
was filled with smoke at 1.6 ms, and at 1.8 ms the basepad began to burn,
feeding a small tongue of flame along the rear of the charge at 2.1 ms. At
2.6 ms, there was a stream of flame running diagonally along a portion of the
length of the charge in the same direction as the twist of the sticks. This
stream began to dim at 2.8 ms, and all the luminosity in the chamber decreased
so that at 4.5 ms, there was virtually no luminosity even in the rear ullage.
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At 5.0 ins, there was once again flame in the rear ullage, increa.i:.:
intensity until 7.1 ms, when a stream of burning gases extended from t I,
along the middle of the charge. By 7.8 ms, there was significant] ,
streaming, showing some preferential flow along the twist of the stick.. I ,
streaming continued, with smoke becoming visible in the ullage lbetw,.,ii ii.
tront of the stick bundle and projectile at 10.1 ils. With some s t -.,mii
the flame continuing with a slight preference along the twist of the ,t
the forward ullage was filled with smoke by 13.5 ins. At 17.3 ins, there,
only small tongues of flame extending from the rear ullage, but theyi,
longer by 18.7 ms when the streaming obviously followed the twisit ()I

sticks. At 19.6 ins, half the bed was engulfed in wavering flames, wit}. ,:
smoke at the front of the charge. At 20.3 ins, nearly all the bed was co%,,
by flame, with some spots apparently hotter than others. By the t ii,'
chamber fractured at 20.8 is, onlv a small (lark spot remained at the ft( i-..
end of the chamber. Again for this shot, no well-defined f laitf, !I!.
developed. The maximum velocity reached by the stick bundle was on the ()t-d.
of 10 m/s, but it was impossible to measure the velocity just prior to imp'i.
due to poor lighting in the region.

The static X-ray for the 2/3 -ma:ximum- twist charge again showed Ji I I
loading features as described for the axially aligned charge. Tiat t .
some twist to the stick bundle was apparent in the static X-ray, though it
impossible to trace individual sticks through the charge. The image show(. ! :i.
in some places as crisscrossing lines since the radiograph is a planar prii..
tion of the entire thickness of the charge. The dynamic X-ray, taken a,
spindle pressure of approximately 7 MPa, showed that the stick bundle had ',l.
in this instance moved forward to rest against the base of the project i
There was some slight shadows of basepad materials in the rear ullage, b I
was impossible to distinguish any individual basepad components. There ,, :

% some opening up of space between the sticks near the forward end of the clHti'..
and in a region near the top rear of the charge, and the twist of the stiVP.
was most obvious at these locations. No evidence of fracture of the st irk
anywhere in the charge was apparent from the dynamic X-ray.

D. Maximum-Twist Charge

The spindle and projectile base pressures and the force measured at tm,
base of the projectile for the maximum-twist charge are displayed in Fii.
I0. All of the curves appear quite similar to those obtained with the
maximum- twist charge. The ignition delay was again shortened in cowpi. ir,,i
with that of the axial lv al i gned charge, but there was no not i cc t
difference between the delay with this charge and the previous one. Ai, ii
the pressure gradient established between the ends of the stick bund, i
apparent, reaching a maximiim on the order of 7 MPa at chamber fa;3illire .
was no strong impact of the, propellant bed upon the project ile ha,, ; i I
from the force gage, although the higher force gage record perhaps i di- ,

* some small solid-phase force on the pro.jectile base.

-N On the high-speed films for this shot, the primer was seen to vent Ii

the of the charge at 1.4 ins, and by 1.6 ins, the ullage was filled wit 1
bright luminosity. The basepad continued to burn, with a short :: .
flame along the top of the char,,e at. 2.1 ins. Pr-ogress ive IY, this; toVm.1,

0 flame died out, and luminosity in the r-ear ullage was reduced coos
. m 1 nin0 sitv a, t he i ir coft i ni ted at a l ow ii it ensitv. vi ,

17

0

KM~



1 . 12

14-

13-

12-
a1-9 .

S 8. - SPINDLE PRESS

a S 6-

W L
S 4-

0L

SPROJ BAlSE JFORCE
2-

21

S_' PROJ BASE PRESS

0 0
0 S 10 Is ) s :0 I

* TIME (MeS)

Figure 10. Pressures and Force, Maximum-Twist Charge

turbulence noted in the ullage at around 5.6 ms. At 6.1 ms, the luminosity in
the rear ullage began to increase, and by 6.8 ms, there were two thin
streamers of flame at the top of the charge extending nearly a third the

length of the chamber. By 7.7 ms, this had evolved into a single sheet of
flame covering the top half of the charge and extending nearly half its
length. This stream of flame continued to develop along the top of the charge
until 9.7 ms, when it began to break up and become dimmer. At 12.1 ms, the

luminosity in the rear ullage was still great, but there were only a couple of
small wisps of flame extending half the length of the charge. These wisps
continued to develop, and from about 14.5 ms until 19.1 ms, a well defined
stream of flame developed along the diagonal from the top rear to the bottom
front portion of the charge, very obviously following the twist of the stick
bundle. Finally, a pulse of flame, beginning near the middle of the charge,

traversed to the front of the charge just before the chamber failed. At no
time during the event was there a well-defined flamefront. While it was more
difficult to obtain velocities of the propellant on this shot, the maximum
velocity appeared to be slightly greater than that obtained on the 2/3-

maximum-twist shot.

The static X-ray for the maximum-twist charge again showed all the

loading features as described for the axially aligned charge. The dynamic X-

ray was recorded at a spindle pressure of approximately 7 MPa and showed that

this stick bundle too moved forward to impact the base of the projectile. No
trace of any igniter materials remained in the rear ullage. There was some

space visible between sticks at the top rear and bottom forward portions of

the charge and once again, the twist of the sticks was most obvious in these

18
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I ocat ions No sticks moved forward to fill in the area around the proj,,,

boattail ramp. There was no evidence of breakup of the propellant gr-i-i-.

IV. CONCLUSIONS

While it is not wise to draw sweeping conclusions from s-;uhI} liili:-.
number of shots, several observations can be made from the hod' of do
obtained in the simulator with these stick charges of progressively i
obliquity to the axis of the chamber.

First, we note an underscoring of a lesson learned from tests wit ,
bustible-case stick charges: while the flow of gases within a stick prop,
lant bundled is relatively unimpeded due to the natural flow chann(els,, i
may have difficulty entering the stick bundle due to the discoit nmti':

porosity at the interface. The high-speed films demonstrated this f-e:
that the igniter gases remained in the rear ullage for a substantial period
time before entering the stick bed.

The ignition delays decreased as the obliquity of the stick loi,,li"increased. This is almost certainly a consequence of the ignit:er gass ) , I'
produced in a constrained volume, being unable to easily find relief tmn,'i,
entry into the stick bed, thus pressurizing the rear ullage to a gi.,
extent for the more twisted charges. Such higher pressurization would le.aid
earlier sustained combustion of the affected portions of the charge, rd, cimr

V, the ignition delay.

-P," Also as a consequence of the relative difficulty of flow of gases thr(iI,.!,
the stick bed, we noted a tendency for increased pressure differentials acr, '.,'
the bed for even a small degree of twist. However, the levels remained 1,,1,.
enough - less than 10 MPa during the flamespreading period - that the';,
probably not ballistically significant.

As with all of our previous work with stick charges in the simulator, '..
again failed to observe a well-defined progression of a fl-amefront though hi
charge as has been seen with granular charges. Rather, the gases seem : ,
stream through or around the stick bundle at favorable locations, bringing l .1,
propellants to ignition at seemingly random locations but with rapid combwi,:-
tion nearly uniformly along the length of the charge.

Finallv we note that a]l the charges moved forward to impact the h a , (0
i the projectile, to varying degrees of severity not clearly dependtiit ,m :h.

intuitive resistance to gas f low. Perhaps cotrary to expect at ioil, I I ',.,

charges with the greatest sol id-phas;e loading on the project i e w.:ore hr. ,,

withi the least amoun~t: of ohliquityv, tho.se with the expected least resist.,
It has been sugthat thi lak of a strong impact of the more twi ',

bundles on the base of the projectr ile might be a result of friction he.:',..

0 the charge bundle and the chamber wall. As the imtniiter and earl'.' ',m it
gases follow the flow channels in a the twisted -stick hundle, thb' r, will h ,
component of gas flow normal to the chamber axis, resulting in fnrces t l t,

8Alhert W. Horst, pri,.,at comm t ic"11 iton Noveir er l,/.
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to expand the bundle against the chamber wall. It would be expected that the
forces would increase with greater obliquity, yielding higher frictional
forces between the charge and chamber wall and resulting in less of a tendency
for the charge to be 9Propelled against. the projectile base. Alternatively, it
has been pointed out that this finding might be a result of the fabrication
method of the stick bundles. In the progression of lavers of sticks from the
interior to the exterior of the charge, the sticks became increasing morte
twisted about the bundle so that the outer sticks occupied less axial extent
than the inner sticks. A possible result of this geometry is that the end of
stick bundle was not completely flat, with the sticks at the center region of
the charge protruding slightly from the end of the bundle. While not
noticeable, this slight protrusion may have impacted the base of the
projectile at the center, away from the force gage locations, thereby
cushioning the impact of the remainder of the charge on the gages. While all
of the charges impacted the projectile base, there was no evidence from the
radiographs of any stick breakage.

This study has provided further insight into those events transpiring
during the flamespreading process with stick propellant charges and furnished
the first detailed view of the effects on this process of oblique loading of
the stick propellants. The testing in the simulator would seem to indicate
that such a loading configuration, at least to the extent of the twist studied
here, would have no real ballistic significance. However, to fully substan-
tiate this statement, full-scale ballistic testing will be required. Addi-
tional testing, planned for the future at BRL in a flow fixture that pushes

% Linert gases through beds of propellant simulants and permits measurements of
% pressure drops along the bed, will be required to develop the experimental

correlations for flows such as those described here for inclusion into multi-
phase flow models.
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